Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Nature ; 626(8000): 827-835, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355791

RESUMO

Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.


Assuntos
Imunidade Adaptativa , Fumar , Feminino , Humanos , Masculino , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/genética , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Índice de Massa Corporal , Citocinas/sangue , Citocinas/imunologia , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Infecções/etiologia , Infecções/imunologia , Neoplasias/etiologia , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética , Fumar/imunologia
2.
Cytometry A ; 105(2): 124-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37751141

RESUMO

Flow cytometry is the method of choice for immunophenotyping in the context of clinical, translational, and systems immunology studies. Among the latter, the Milieu Intérieur (MI) project aims at defining the boundaries of a healthy immune response to identify determinants of immune response variation. MI used immunophenotyping of a 1000 healthy donor cohort by flow cytometry as a principal outcome for immune variance at steady state. New generation spectral cytometers now enable high-dimensional immune cell characterization from small sample volumes. Therefore, for the MI 10-year follow up study, we have developed two high-dimensional spectral flow cytometry panels for deep characterization of innate and adaptive whole blood immune cells (35 and 34 fluorescent markers, respectively). We have standardized the protocol for sample handling, staining, acquisition, and data analysis. This approach enables the reproducible quantification of over 182 immune cell phenotypes at a single site. We have applied the protocol to discern minor differences between healthy and patient samples and validated its value for application in immunomonitoring studies. Our protocol is currently used for characterization of the impact of age and environmental factors on peripheral blood immune phenotypes of >400 donors from the initial MI cohort.


Assuntos
Seguimentos , Humanos , Imunofenotipagem , Fenótipo , Citometria de Fluxo/métodos
4.
Nat Commun ; 14(1): 8347, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102153

RESUMO

Genome-wide association studies (GWASs) have identified thousands of non-coding variants that are associated with human complex traits and diseases. The analysis of such GWAS variants in different contexts and physiological states is essential for deciphering the regulatory mechanisms underlying human disease. Alternative polyadenylation (APA) is a key post-transcriptional modification for most human genes that substantially impacts upon cell behavior. Here, we mapped 9,493 3'-untranslated region APA quantitative trait loci in 18 human immune baseline cell types and 8 stimulation conditions (immune 3'aQTLs). Through the comparison between baseline and stimulation data, we observed the high responsiveness of 3'aQTLs to immune stimulation (response 3'aQTLs). Co-localization and mendelian randomization analyses of immune 3'aQTLs identified 678 genes where 3'aQTL are associated with variation in complex traits, 27.3% of which were derived from response 3'aQTLs. Overall, these analyses reveal the role of immune 3'aQTLs in the determination of complex traits, providing new insights into the regulatory mechanisms underlying disease etiologies.


Assuntos
Poliadenilação , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Poliadenilação/genética , Regiões 3' não Traduzidas/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial
5.
Gut Microbes ; 15(2): 2287618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017705

RESUMO

Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.


Assuntos
Candida albicans , Microbioma Gastrointestinal , Humanos , Candida albicans/fisiologia , Estudo de Associação Genômica Ampla , Microbioma Gastrointestinal/fisiologia , Dieta , Imunidade
6.
iScience ; 26(8): 107422, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37575177

RESUMO

Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control. All stimuli induced a strong production of oxylipins but most importantly, bacterial, viral, and T cell immune responses show distinct oxylipin signatures. Integration of the oxylipin and cytokine responses for each condition revealed new immune networks improving our understanding of inflammation regulation. Finally, the oxylipin responses and oxylipin-cytokine networks were compared in patients with active tuberculosis or with latent infection. This revealed different responses to BCG but not LPS stimulation highlighting new regulatory pathways for further investigations.

7.
Nature ; 621(7977): 120-128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558883

RESUMO

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.


Assuntos
COVID-19 , Genética Populacional , SARS-CoV-2 , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Diferenciação Celular , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Citomegalovirus/fisiologia , População do Leste Asiático/genética , Introgressão Genética , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Interferons/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Mieloides/imunologia , Homem de Neandertal/genética , Homem de Neandertal/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Seleção Genética , Latência Viral
10.
Proc Natl Acad Sci U S A ; 120(6): e2211098120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730204

RESUMO

The segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process. Customized barcoded primers for targeted viral RNA sequencing enabled the analysis of 18,422 viral genotypes resulting from coinfection with two circulating human H1N1pdm09 and H3N2 IAVs. Results were highly reproducible, confirmed that genetic reassortment is far from random, and allowed accurate quantification of reassortants including rare events. In total, 159 out of the 254 possible reassortant genotypes were observed but with widely varied prevalence (from 0.038 to 8.45%). In cells where eight segments were detected, all 112 possible pairwise combinations of segments were observed. The inclusion of data from single cells where less than eight segments were detected allowed analysis of pairwise cosegregation between segments with very high confidence. Direct coupling analysis accurately predicted the fraction of pairwise segments and full genotypes. Overall, our results indicate that a large proportion of reassortant genotypes can emerge upon coinfection and be detected over a wide range of frequencies, highlighting the power of our tool for systematic and exhaustive monitoring of the reassortment potential of IAVs.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae , Vírus Reordenados/genética , RNA Viral/genética , Análise de Sequência de RNA
11.
Cell Genom ; 3(2): 100248, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819665

RESUMO

Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.

12.
Front Epidemiol ; 3: 1201038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455935

RESUMO

Background: French Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. Objectives: The present project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determine the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. Methods: This cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. Conclusion: For the first time in French Polynesia, the present project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia. Clinical trial registration: https://clinicaltrials.gov/, identifier: NCT06133400.

13.
iScience ; 25(11): 105291, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304101

RESUMO

Low monocyte (m)HLA-DR expression is associated with mortality in sepsis. G-286A∗rs3087456 polymorphism in promoter III of HLA class II transactivator (CIITA), the master regulator of HLA, has been associated with autoimmune diseases but its role in sepsis has never been demonstrated. In 203 patients in septic shock, GG genotype was associated with 28-day mortality and mHLA-DR remained low whereas it increased in patients with AA or AG genotype. In ex vivo cells, mHLA-DR failed to augment in GG in comparison with AG or AA genotype on exposure to IFN-γ. Promoter III transcript levels were similar in control monocytes regardless of genotype and exposure to IFN-γ. Promoter III activity was decreased in GG genotype in monocyte cell line but restored after stimulation with IFN-γ. Hereby, we demonstrated that G-286A∗rs3087456 significantly impact mHLA-DR expression in patients with septic shock in part through CIITA promoter III activity, that can be rescued using IFN-γ.

14.
Nat Commun ; 13(1): 5895, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202838

RESUMO

Epigenetic changes are required for normal development, yet the nature and respective contribution of factors that drive epigenetic variation in humans remain to be fully characterized. Here, we assessed how the blood DNA methylome of 884 adults is affected by DNA sequence variation, age, sex and 139 factors relating to life habits and immunity. Furthermore, we investigated whether these effects are mediated or not by changes in cellular composition, measured by deep immunophenotyping. We show that DNA methylation differs substantially between naïve and memory T cells, supporting the need for adjustment on these cell-types. By doing so, we find that latent cytomegalovirus infection drives DNA methylation variation and provide further support that the increased dispersion of DNA methylation with aging is due to epigenetic drift. Finally, our results indicate that cellular composition and DNA sequence variation are the strongest predictors of DNA methylation, highlighting critical factors for medical epigenomics studies.


Assuntos
Metilação de DNA , Epigenômica , Adulto , Envelhecimento/genética , Epigênese Genética , Epigenômica/métodos , Humanos , Fatores Imunológicos
15.
Curr Biol ; 32(21): 4565-4575.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36108636

RESUMO

The Vanuatu archipelago served as a gateway to Remote Oceania during one of the most extensive human migrations to uninhabited lands ∼3,000 years ago. Ancient DNA studies suggest an initial settlement by East Asian-related peoples that was quickly followed by the arrival of Papuan-related populations, leading to a major population turnover. Yet there is uncertainty over the population processes and the sociocultural factors that have shaped the genomic diversity of ni-Vanuatu, who present nowadays among the world's highest linguistic and cultural diversity. Here, we report new genome-wide data for 1,433 contemporary ni-Vanuatu from 29 different islands, including 287 couples. We find that ni-Vanuatu derive their East Asian- and Papuan-related ancestry from the same source populations and descend from relatively synchronous, sex-biased admixture events that occurred ∼1,700-2,300 years ago, indicating a peopling history common to the whole archipelago. However, East Asian-related ancestry proportions differ markedly across islands, suggesting that the Papuan-related population turnover was geographically uneven. Furthermore, we detect Polynesian ancestry arriving ∼600-1,000 years ago to Central and South Vanuatu in both Polynesian-speaking and non-Polynesian-speaking populations. Last, we provide evidence for a tendency of spouses to carry similar genetic ancestry, when accounting for relatedness avoidance. The signal is not driven by strong genetic effects of specific loci or trait-associated variants, suggesting that it results instead from social assortative mating. Altogether, our findings provide an insight into both the genetic history of ni-Vanuatu populations and how sociocultural processes have shaped the diversity of their genomes.


Assuntos
DNA Antigo , Migração Humana , Humanos , Genômica , Genoma Humano , Havaiano Nativo ou Outro Ilhéu do Pacífico , Genética Populacional
16.
Curr Biol ; 32(11): R535-R538, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671731

RESUMO

Ancient DNA provides answers to long-standing debates about past human history. New work using demographic modeling on ancient genomes documents the nature and timing of the demographic processes - population size changes, divergences and admixture - that took place in prehistoric Europe.


Assuntos
Genoma Humano , Genômica , DNA Antigo , Demografia , Europa (Continente) , História Antiga , Humanos , Paleontologia
17.
Cell Rep ; 39(13): 110989, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767946

RESUMO

The interleukin-12 (IL-12) family comprises the only heterodimeric cytokines mediating diverse functional effects. We previously reported a striking bimodal IL-12p70 response to lipopolysaccharide (LPS) stimulation in healthy donors. Herein, we demonstrate that interferon ß (IFNß) is a major upstream determinant of IL-12p70 production, which is also associated with numbers and activation of circulating monocytes. Integrative modeling of proteomic, genetic, epigenomic, and cellular data confirms IFNß as key for LPS-induced IL-12p70 and allowed us to compare the relative effects of each of these parameters on variable cytokine responses. Clinical relevance of our findings is supported by reduced IFNß-IL-12p70 responses in patients hospitalized with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or chronically infected with hepatitis C (HCV). Importantly, these responses are resolved after viral clearance. Our systems immunology approach defines a better understanding of IL-12p70 and IFNß in healthy and infected persons, providing insights into how common genetic and epigenetic variation may impact immune responses to bacterial infection.


Assuntos
Interferon beta , Interleucina-12 , Receptor 4 Toll-Like , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Proteômica , SARS-CoV-2/imunologia
18.
Eur J Hum Genet ; 30(8): 915-921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760904

RESUMO

Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.


Assuntos
COVID-19 , Evolução Biológica , COVID-19/genética , Predisposição Genética para Doença , Humanos , Pandemias , SARS-CoV-2
19.
Arthritis Rheumatol ; 74(12): 1991-2002, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726083

RESUMO

OBJECTIVE: Primary Sjögren's syndrome (SS) is the second most frequent systemic autoimmune disease, affecting 0.1% of the general population. To characterize the molecular and clinical variabilities among patients with primary SS, we integrated transcriptomic, proteomic, cellular, and genetic data with clinical phenotypes in a cohort of 351 patients with primary SS. METHODS: We analyzed blood transcriptomes and genotypes of 351 patients with primary SS who were participants in a multicenter prospective clinical cohort. We replicated the transcriptome analysis in 3 independent cohorts (n = 462 patients). We determined circulating interferon-α (IFNα) and IFNγ protein concentrations using digital single molecular arrays (Simoa). RESULTS: Transcriptome analysis of the prospective cohort showed a strong IFN gene signature in more than half of the patients; this finding was replicated in the 3 independent cohorts. Because gene expression analysis did not discriminate between type I IFN and type II IFN, we used Simoa to demonstrate that the IFN transcriptomic signature was driven by circulating IFNα and not by IFNγ protein levels. IFNα protein levels, detectable in 75% of patients, were significantly associated with clinical and immunologic features of primary SS disease activity at enrollment and with increased frequency of systemic complications over the 5-year follow-up. Genetic analysis revealed a significant association between IFNα protein levels, a major histocompatibility (MHC) class II haplotype, and anti-SSA antibody. Additional cellular analysis revealed that an MHC class II HLA-DQ locus acts through up-regulation of HLA class II molecules on conventional dendritic cells. CONCLUSION: We identified the predominance of IFNα as a driver of primary SS variability, with IFNα demonstrating an association with HLA gene polymorphisms.


Assuntos
Síndrome de Sjogren , Humanos , Interferon-alfa , Proteômica , Estudos Prospectivos , Antígenos HLA-DQ/genética
20.
Nat Ecol Evol ; 6(5): 565-578, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35273366

RESUMO

Host-pathogen interactions impose recurrent selective pressures that lead to constant adaptation and counter-adaptation in both competing species. Here, we sought to study this evolutionary arms-race and assessed the impact of the innate immune system on viral population diversity and evolution, using Drosophila melanogaster as model host and its natural pathogen Drosophila C virus (DCV). We isogenized eight fly genotypes generating animals defective for RNAi, Imd and Toll innate immune pathways as well as pathogen-sensing and gut renewal pathways. Wild-type or mutant flies were then orally infected with DCV and the virus was serially passaged ten times via reinfection in naive flies. Viral population diversity was studied after each viral passage by high-throughput sequencing and infection phenotypes were assessed at the beginning and at the end of the evolution experiment. We found that the absence of any of the various immune pathways studied increased viral genetic diversity while attenuating virulence. Strikingly, these effects were observed in a range of host factors described as having mainly antiviral or antibacterial functions. Together, our results indicate that the innate immune system as a whole and not specific antiviral defence pathways in isolation, generally constrains viral diversity and evolution.


Assuntos
Proteínas de Drosophila , Vírus de RNA , Animais , Antivirais/metabolismo , Dicistroviridae , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Imunidade Inata , Vírus de RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...